The Health and Wellness Center
BUILDING USER INTRODUCTION

The behavior of those who occupy this building will have a tremendous impact upon the actual performance of the building and the resulting energy and cost savings.

TABLE OF CONTENTS

Why Does it Matter? 1
Willamette Valley Potential 5
Building on Precedence 9
Reducing Energy Loads 13
Drawings 19
How it Works 27
Many scientists give us 10 years to be well on our way towards global greenhouse gas emission reductions in order to avoid catastrophic climate change.

Data from the US Energy Information Administration illustrates that buildings are responsible for almost half (48%) of all energy consumption and greenhouse gas (GHG) emissions annually; globally the percentage is even greater. Seventy-six percent (76%) of all power plant generated electricity is used just to operate buildings. Clearly, immediate action in the Building Sector is essential if we are to avoid hazardous climate change.

The 2030 Challenge - Architecture 2030

Architecture 2030 is an environmental advocacy group formed in response to rapidly accelerating climate change. The 2030 Challenge addresses the crisis situation surrounding the ‘Building Sector’ as a major source of demand for energy. Stabilizing and reversing emissions in this sector is the key to keeping global warming within 1°C of today’s levels.
Architecture 2030 issued the 2030 Challenge, which requires each new building project or major renovation to be designed to achieve an energy consumption performance standard of 60% of the regional average for that project’s building type. Every five years the standard will increase by 10%, achieving a carbon neutral building in the year 2030. Major renovations are only required to meet a 50% target throughout this timeline, but are encouraged to achieve the increased reductions.

U.S. Averages for Site Energy Use and 2030 Challenge Energy Reduction Targets by Space/Building Type

From the Environmental Protection Agency (EPA); Use this chart to find the site fossil-fuel energy targets

<table>
<thead>
<tr>
<th>Primary Space/Building Type</th>
<th>Average Source EUI (kBtu/sq.ft/yr)</th>
<th>Average Percent Electric</th>
<th>Average Site EUI (kBtu/sq.ft/yr)</th>
<th>50% Target</th>
<th>60% Target</th>
<th>70% Target</th>
<th>80% Target</th>
<th>90% Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>170</td>
<td>63%</td>
<td>76</td>
<td>38.0</td>
<td>30.4</td>
<td>22.8</td>
<td>15.2</td>
<td>7.6</td>
</tr>
<tr>
<td>College/University (campus-level)</td>
<td>280</td>
<td>63%</td>
<td>120</td>
<td>60.0</td>
<td>48.0</td>
<td>36.0</td>
<td>24.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Health Care Outpatient Health</td>
<td>183</td>
<td>72%</td>
<td>73</td>
<td>36.5</td>
<td>29.2</td>
<td>21.9</td>
<td>14.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Clinic/Other Outpatient Health</td>
<td>219</td>
<td>76%</td>
<td>84</td>
<td>42.0</td>
<td>33.6</td>
<td>25.2</td>
<td>16.8</td>
<td>8.4</td>
</tr>
</tbody>
</table>

2030 Challenge Site EUI Targets (kBtu/Sq.Ft/Yr)
In an attempt to pave the way for a clean energy future and move toward new buildings that produce as much energy as they use, the Health and Wellness Center team designed the new building to be as energy efficient as possible. With a designed Energy Use Intensity level at 36, we were able to reduce the energy required to operate at less than half that of a Code Baseline Building of the same size.

“Reducing operating costs through energy efficiency can help make tuition more affordable and free’s up funds for other purposes.”

Energy Trust of Oregon
The Willamette Valley offers incredible potential. Besides being a bucolic landscape that offers a wealth of produce, it also has a temperate climate that can be a perfect base from which to make energy savings.

The temperature, wind speed and direction, as well as hours of daylight all become criteria that with detailed study can aid in developing a passively ventilated building that is naturally lit. The Health and Wellness Center is designed on these strategies of passive cooling/ventilating and daylighting.
Analysis of maximum and minimum temperatures for Eugene across the years 1928 to 2007 allowed the design team to understand the comfort range required for a classroom environment within this area.

Low night time temperatures provided the opportunity to naturally keep the building cool through the means of “night flushing” during these hours and absorbing this cool energy in the building mass.
The building orientation, and the times in which the building will be in use, allowed the design team to determine which spaces can take advantage of natural light while controlling solar heat gain. Most of the large classroom spaces are located on the north side of the building since the north light is softer and easier to control for classroom type settings, while the smaller offices are located on the south and west sides since they can handle the higher heat gain due to fewer occupants being in the space. The Lung provides daylight on the backside of the classrooms and other interior spaces, virtually eliminated the need for artificial lighting.
The building orientation and design was also directly influenced by our analysis of the local wind patterns. Fortunately, the primary wind direction during the warm summer months came from one direction. With the wind coming directly from the north for most of this time period we were able to design the building Lung to face away from the direct winds, which helped increase the natural stack effect. To compensate for times when the wind comes from the south we were able to design the solar panel array to serve as a deflector.
BUILDING ON PRECEDENCE
You are not the guinea pigs!
The Health and Wellness Center is not the first building to use both passive ventilation strategies and natural lighting. In fact, historically these basic strategies have been used for generations within traditional building forms.

Using these traditional methods along with modern technology allows for a higher performance. The passive strategies used in the new Health and Wellness Center have been developed from precedent studies the design team has used before.

Cool air enters the room through vents from the exterior
The air enters the classroom from under the raised floor

Thermal mass floor, ceiling and roof absorb the cool air and radiate it back to the building occupants throughout the day
Warm air rises and is ducted out to the atrium
Air in the classroom is circulated by the ceiling fans allowing the occupant to feel comfortable at a higher temperature

night flush cooling

BUILDING ON PRECEDENCE
Lillis Building Complex
Thermal mass floor, ceiling and roof

Air in the classroom is circulated by the ceiling fans allowing the occupant to feel comfortable at a higher temperature.

Stack ventilation with turbine ventilators allows warm air to rise and exit out at the roof level.

Cool air enters the room through vents from the exterior.

Thermal mass floor, ceiling and roof.

The skylight electronically controls the percent of light to enter the room.

Light hits the reflector and is reflected further into the room.

daylighting

night flush cooling
The Lung provides light into the interior side of the classrooms and support spaces and serves as the stack for the warm air to exit the building.

Light shelves reflect the direct sunlight further into the room and provide more even illumination.

Thermal mass: exposed concrete floors, ceiling and roof.

Stack ventilation allows warm air to rise and exit out at the top of the Lung. Turbine ventilators provide the stack ventilation at the office's.

Air circulated by the ceiling fans provide an additional cooling effect and allow the occupants to feel more comfortable when the indoor temperature rises.

Cool air enters the room through automated windows on the exterior to cool the exposed thermal mass.
For the past five years, we have approached passive design in a new and very different manner. Through a unique partnership with an academic research organization, we have moved from an intuitive approach to an objective methodology, relying on extensive computational fluid dynamics and daylighting studies. We collaborated closely with this scientific team and our mechanical engineer to develop the detailed workings of the “lung.”

We’ve determined that six essential design components must all function successfully and integrate completely to eliminate mechanical cooling: shading and orientation, mass, daylighting, night flush cooling, ceiling fans, and occupant training. This approach requires the client to trust in a new research based design methodology, the full support of the building occupants, and the enthusiastic endorsement of the facilities staff. It’s a paradigm shift in the way that people understand buildings – not as static structures, but as interactive environments.
REDUCING ENERGY LOADS
Daylighting analysis is key to designing spaces that are energy efficient. The design team studied various options on the Lung, including width and the shape at the top to maximize the daylighting for both floors of classrooms.
“Thermal mass can be used to absorb heat from a room during the day and then be cooled at night with ventilation.” - Sun, Wind and Light Architectural Design Strategies- GZ Brown & Mark DeKay

The Health and Wellness Center uses night flush to allow cool night air to enter the building through automated windows. This cool air is absorbed by the thermal mass, including concrete floors and ceiling, and radiates this cool energy back to the occupants throughout the day. This helps keep the temperature in the room lower as the outside temperature rises. During the day, when the outside air temperature is warm, the building envelope is closed and any excess heat gain is stored in the mass helping keep the interior air temperature comfortable.
In the Health and Wellness Center all the classrooms and offices are equipped with ceiling fans to increase air movement in the space. When the interior temperature climbs above the comfort zone, switching on the ceiling fans will extend the comfort range of the occupants. Ceiling fans and night cooling of the thermal mass keeps classrooms and offices comfortable without additional mechanical cooling and therefore saves energy. The design team has projected a 5°F increase in the comfort range resulting from the combined use of thermal mass and ceiling fans.

“Ceiling Fans increase air movement across people, making them feel as much as 4°F cooler even though the temperature in the spaces does not change.” Natural Ventilation in Northwest Buildings- GZ Brown, Jeff Kline, Gina Livingston, Dale Northcutt, Emily Wright ESRL
The building skin keeps out the wind and rain, lets in light and fresh air, and provides security and privacy. In the Health and Wellness Center the skin also mediates the effects of climate on the energy systems by insulating above standard code requirements. The cement board siding is part of a rain screen wall assembly that includes insulation on the outside of the stud cavity. This eliminates thermal bridging and performs at a much higher level of energy efficiency.

A radiant floor at the entry lobby and radiant ceiling panels in all the offices and classrooms keep the building warm throughout the cool winter months. In addition, the light shelf at the offices is also a radiant panel. The radiant system is connected to an efficient campus loop system, which benefits from a 1,100 sf solar hot water system on the roof. When this hot water isn’t needed in the building it is used in the adjacent gymnasium showers and laundry facility. Radiant heat is more comfortable and more energy efficient than forced air systems.
Solar shading is used both internally and externally to help reduce the solar heat gain and maximize the daylighting throughout the building. For the Health and Wellness Center the design team generated computer studies for the south and west facing office windows in addition to the north facing classrooms. The analysis helped determine building orientation, widow size, and window location to ensure protection from unwanted solar heat and to control glare. The interior manual shades give the occupants control over their environment and help reduce glare. The external shading provides protection from solar heat gain by shading the windows from radiant energy.

South Elevation shading analysis
This building costs the same as a similar building with a conventional HVAC system. This is a very significant statement. Many people believe highly sustainable features add cost, that there is a premium for green features. If the green features are additive or supplementary, this may indeed be true. We believe however, and this building demonstrates, this is not necessarily true. If the passive approach is fully integrated, if it is the basis of design, and if the client is willing to take that leap of faith to fully commit to it, then the building should not cost any more.

The foundation of our approach is load reduction. Reducing loads is the most cost effective approach to green design, whereas energy production is the most expensive. The orientation of spaces, the amount and orientation of glazing, the use of shading devices all contribute to reducing solar heat gain. Daylighting reduces internal heat gain from artificial lighting and passive ventilation reduces fan energy. Utilization of night flush reduces cooling loads. All of these contribute to eliminating the cooling system and significantly downsizing the ventilation system.

Energy Savings

Code Base model $35,000

Model of Health and Wellness Center $18,000

Annual Energy Savings $17,000

These figures do not include energy saved by future photo voltaic power generation or energy saved by the solar hot water installation.

Building Construction Cost

<table>
<thead>
<tr>
<th>COMPARABLE HEALTH AND WELLNESS PROJECTS</th>
<th>$10</th>
<th>$100</th>
<th>$300</th>
<th>$400</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIT Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clackamas CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemeketa CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Washington</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skagit Valley CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost / SF to build

REDUCING ENERGY LOADS

Cost Savings
- Integrated hot water and future photovoltaic panels. Solar hot water supplied to gym building next door.

- A two story central building ‘lung’ prides both natural light and cooling to interior classroom spaces. Cool air is brought into the space through the automated windows to cool the concrete mass (5), while the hot air is exhausted through the top of the ‘lung’.

- Natural ventilation strategies are also used at the office ‘pods’. Turbine ventilators on the roof provide chimneys to exhaust the hot air, while automated windows (both interior and exterior) bring in fresh air from the outside.

- Exterior sunshades provide solar control at south and west facing offices. Interior roller shades and light sensors provide optimal light levels throughout the building.

- Increased thermal mass is provided at each floor level and at the roof to reduce fluctuations in temperature. Radiant ceiling panels tied to a campus loop system provide heating throughout the building and also help reduce air-borne dust.

- Rain gardens along the base of the building provide natural landscaping that reduces storm water run-off and filters out any potential pollutants. Scuppers with rain chains provide a dramatic visual affect as the water travels from roof top to garden.

THE HEALTH AND WELLNESS CENTER

Section at Lung
- Integrated hot water and future photovoltaic panels. Solar hot water supplied to gym building next door.
- Exterior sunshades provide solar control at south and west facing offices. Interior roller shades and light sensors provide optimal light levels throughout the building.
- Increased thermal mass is provided at each floor level and at the roof to reduce fluctuations in temperature. Radiant ceiling panels tied to a campus loop system provide heating throughout the building and also help reduce air-borne dust.
- Rain gardens along the base of the building provide natural landscaping that reduces storm water run-off and filters out any potential pollutants. Scuppers with rain chains provide a dramatic visual affect as the water travels from roof top to garden.
- Reclaimed wood stair treads and bamboo wall panels and lockers highlight sustainable interior finishes. Zero VOC paints and finishes are used throughout the building along with polished concrete floors.

Sustainable Strategies

- **renewable energy**
- **passive ventilation / cooling**
- **turbine ventilators**
- **dynamic shading / lighting**
- **radiant technology**
- **rain gardens**
- **interior finishes**
exterior materials include: cement board siding, steel shade canopies, automated windows, ipe decking, concrete walkways with recycled glass, and solar hot water panels.
interior materials include: cement board siding, bamboo wall panels, radiant ceiling panels and light shelves, automated windows, reclaimed wood stairs, polished concrete floors with recycled glass, and acrylic wall panels at the Lung.
HOW IT WORKS
HOW IT WORKS

Classroom

Window control
Hold up or down for desired position. Close when warmer outside than inside.

White board light

Fan control
Three speed settings.

Occupancy sensor
Turns lights off when office is unoccupied.

Humidity sensor
Collects information for use by Building Management System.

CO2 sensor
Controls ventilation air - more when classroom is occupied, less when room is unoccupied - to save energy.

Thermostat
The building is naturally cooled by night-flush ventilation and ceiling fan. With exposed concrete and air movement, research shows human comfort extended by 5-degrees.

Air movement and cooling from ceiling fan.

Radiant heat from ceiling panels.
Daylight control with bottom-up window shade.

Light control
Light fixtures adjust automatically with varying daylight. Wall switch has dimming and on/off control.

Ventrilation air is provided through motorized windows with control switch. Automatic operation occurs during night-flush cooling.

Skylight, translucent walls, and openings provide daylight and flow-through ventilation up through vents at the top of the shaft.
HOW IT WORKS
Office

Occupancy sensor
Turns lights off when office is unoccupied.

Fan control
Three speed settings.

Window control
Hold up or down for desired position.

Light control

Thermostat
The building is naturally cooled by night-flush ventilation and ceiling fan. With exposed concrete and air movement, research shows human comfort extended by 5-degrees.

Cooling from ceiling fan.
Radiant heating panels.
Ventilation air is provided through motorized windows with control switch. Automatic operation occurs during night-flush cooling.
Radiant heat from light shelf. Note, this is not a bookshelf. Please don’t store things on it.

Natural light bounces deeper into office from light shelf.
Daylight control with bottom-up window shade.