
MATH 097 Review Answers

- 4. $x = 40^{\circ}$, $y = 60^{\circ}$, $z = 120^{\circ}$
- 5. $x^2 + x^2 = h^2$
 - $2x^2 = h^2$

$$x\sqrt{2} = h$$
 so if side x = 1, then h = $\sqrt{2}$

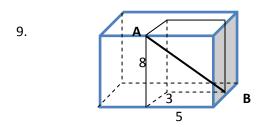
Draw altitude, a, in equilateral triangle, forming two congruent triangles (HL Theorem). If the side of the equilateral triangle is x, then by the Pythagorean Theorem, $\left(\frac{x}{2}\right)^2 + a^2 = x^2$

 $a^2 = x^2 - \frac{x^2}{x}$

$$a^{2} = \frac{3}{4} x^{2}, \text{ so } a = \frac{x\sqrt{3}}{4}$$

If x = 2, then a = $\sqrt{3}$, and $\frac{x}{2} = 1$

7. From #6 above, $(\frac{x}{2})^2 + 3^2 = x^2$


+
$$3^{2} = x^{2}$$

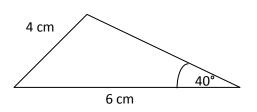
9 = $\frac{3}{4} x^{2}$
 $\frac{36}{3} = x^{2}$
x = $\sqrt{12}$
A = $\frac{12}{2} b h$
b = x = $\sqrt{12}$, h = 3
A = $\frac{12}{2} (\sqrt{12} (3))$
A = $\frac{3}{2} \sqrt{4} (\sqrt{3})$

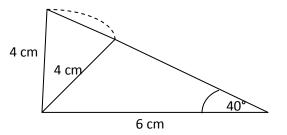
A =
$$3\sqrt{3}$$
 square inches

8. $d^2 = \ell^2 + w^2 + h^2$

$$d^2 = 4^2 + 3^2 + 2^2$$

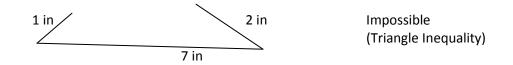
 $d^2 = 29$, so $d \approx 5.385$ inches




 \overline{AB} forms the diagonal of a smaller box with dimensions 5 x 3 x 8 cm.

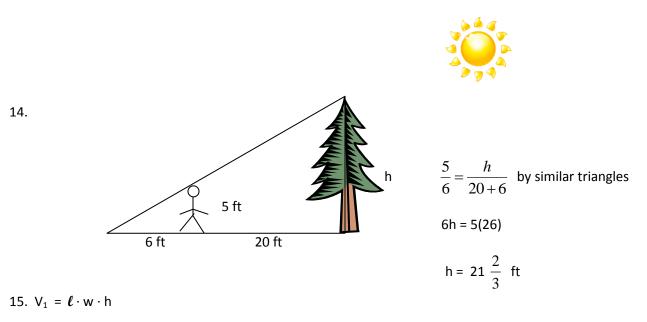
$$AB^2 = 5^2 + 3^2 + 8^2 = 98$$

AB =
$$\sqrt{98} \approx 9.899 \text{ cm}$$



These data fit SSA, so the solution may not be unique. Two different triangles satisfy data.

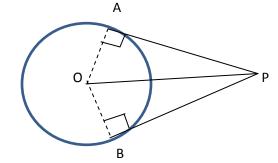
11.



12. Because of symmetry, and the definition of isosceles, HB = 2.

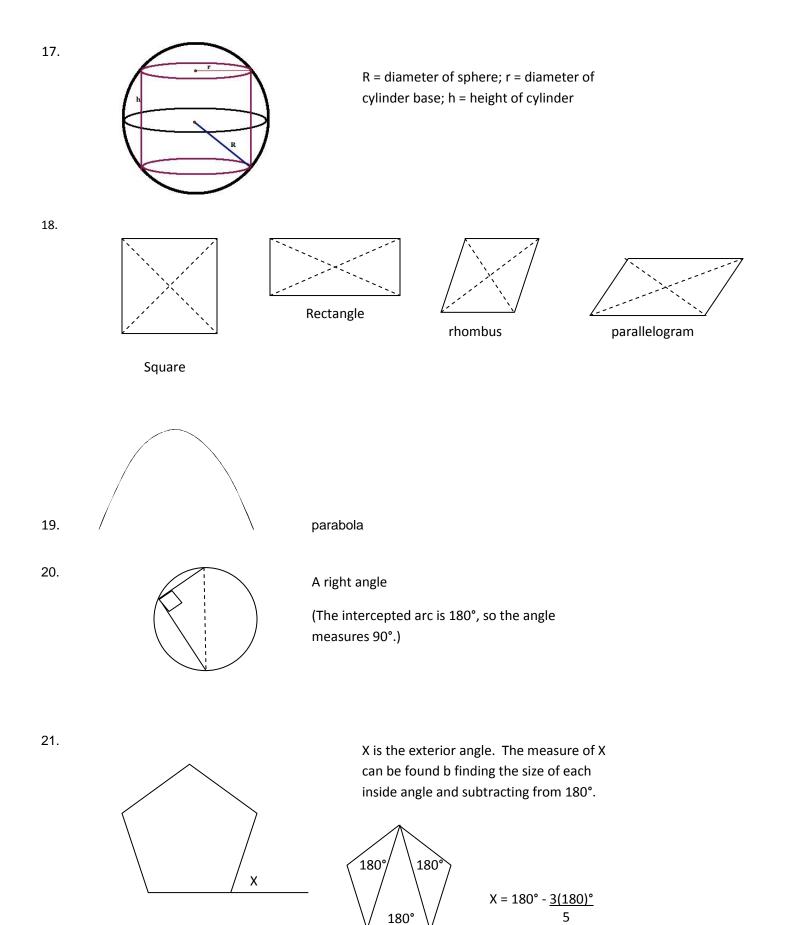
By similar triangles,
$$\frac{5}{8} = \frac{x}{HB}$$
. So x = $\frac{(5)(2)}{8}$ = 1.25 cm

13.
$$\tan 50^\circ = \frac{x}{2.4}$$
 so x = (2.4)(tan 50)


x ≈ 2.86 cm

$$V_2 = (2\ell) \cdot (2w) \cdot (2h)$$

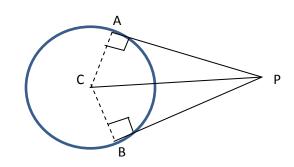
 $V_2 = 8lwh = 8 V_1$ The second box has 8 times the volume of the first box.

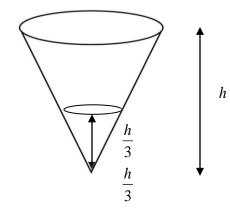


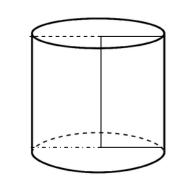
 $\angle APB = 40^{\circ}$ (Given) $\angle PAO = \angle PBO = 90^{\circ}$ (Fact A)

 $\Delta APO \cong \Delta BPO$

 $(\overline{AP} \cong \overline{BP}, \text{ Fact B};$ $\overline{OA} \cong \overline{OB}, \text{ radii}$ $\overline{OP} \cong \overline{OP}, \text{ SSS }$

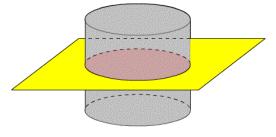

 $\angle APO = 20^\circ$, $\angle AOP = 70^\circ$ $\angle AOB = 140^\circ$ which is the central angle So Arc AB = 140° (Fact C)


X = 72°

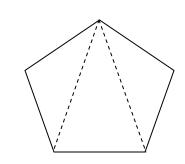

22. $\overline{CA} \perp \overline{PA}$, $\overline{CB} \perp \overline{PB}$

PA = PB

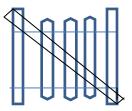
23.



Obtain a cylinder



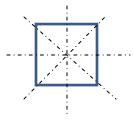
Cross-section is a circle

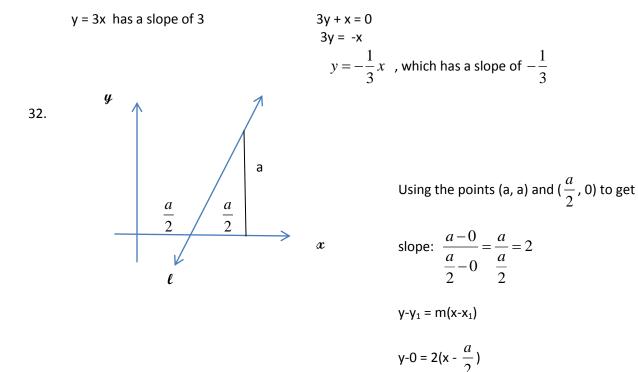

27. The gate needs a diagonal to make it rigid.

26.

24.

Two diagonals will "triangulate" the pentagon and make it rigid.




29. Shapes a, c, d, and e

30. First find slope between (4, 5) and (2, -3) Slope = $\frac{5 - (-3)}{4 - 2} = \frac{8}{2} = 4$

Use either point in the formula $y - y_1 = m(x - x_1)$

Using (4, 5):
$$y-5 = 4(x-4)$$

 $y = 4x - 16 + 5$
 $y = 4x - 11$
Using (2, -3): $y + 3 = 4(x - 2)$
 $y = 4x - 8 - 3$
 $y = 4x - 11$

31. Yes, because their slopes are negative reciprocals of each other.

y = 2x - a