MATH 097 Review Answers

1.

$\mathrm{V}=l \cdot w \cdot h$
$V=(11-4)(81 / 2-4)(2)$
$V=63$ cubic inches

$$
(11-4)
$$

2. $\mathrm{A}=\pi r^{2}$

$$
\mathrm{C}=2 \pi r \rightarrow \mathrm{r}=\frac{C}{2 \pi} \quad \text { so } \quad \mathrm{A}=\pi r^{2}=\pi\left(\frac{C}{2 \pi}\right)^{2}=\pi\left(\frac{C^{2}}{4 \pi^{2}}\right)=\frac{C^{2}}{4 \pi}
$$

$$
\text { Thus } \mathrm{A}==\frac{c^{2}}{4 \pi}
$$

3. $d=3 \rightarrow r=\frac{3}{2} \quad$ Area paper - Area circles $=$ Remaining area

$$
\begin{aligned}
& l \cdot w-4 \cdot \pi r^{2}=\mathrm{A} \\
&(11)\left(8 \frac{1}{2}\right)-4 \cdot \pi\left(\frac{3}{2}\right)^{2}=\mathrm{A} \\
& 93 \frac{1}{2}-9 \pi=\mathrm{A}
\end{aligned}
$$

If $\pi \approx 3.14, A=65.24$ square inches
4. $x=40^{\circ}, y=60^{\circ}, z=120^{\circ}$
5. $\mathrm{x}^{2}+\mathrm{x}^{2}=\mathrm{h}^{2}$

$$
2 x^{2}=h^{2}
$$

$$
x \sqrt{2}=h \quad \text { so if side } x=1, \text { then } h=\sqrt{2}
$$

$\begin{array}{ll}\frac{x}{2} & \frac{x}{2}\end{array}$

Draw altitude, a, in equilateral triangle, forming two congruent triangles (HL Theorem). If the side of the equilateral triangle is x, then by the Pythagorean Theorem, $\left(\frac{x}{2}\right)^{2}+\mathrm{a}^{2}=\mathrm{x}^{2}$

$$
\begin{aligned}
& a^{2}=x^{2}-\frac{x 2}{4} \\
& a^{2}=\frac{3}{4} x^{2}, \text { so } a=\frac{x \sqrt{3}}{4}
\end{aligned}
$$

$$
\text { If } x=2, \text { then } a=\sqrt{3}, \text { and } \frac{x}{2}=1
$$

7. From \#6 above, $\left(\frac{x}{2}\right)^{2}+3^{2}=x^{2}$

$$
A=1 / 2 b h
$$

$$
\begin{array}{ll}
9=\frac{3}{4} x^{2} & b=x=\sqrt{12}, h=3 \\
\frac{36}{3}=x^{2} & A=1 / 2(\sqrt{12}(3) \\
x=\sqrt{12} & A=\frac{3}{2} \sqrt{4} \quad(\sqrt{3}) \\
& A=3 \sqrt{3} \text { square inches }
\end{array}
$$

8. $d^{2}=\ell^{2}+w^{2}+h^{2}$

$$
d^{2}=4^{2}+3^{2}+2^{2}
$$

$$
d^{2}=29, \text { so } d \approx 5.385 \text { inches }
$$

9.

$\overline{A B}$ forms the diagonal of a smaller box with dimensions $5 \times 3 \times 8 \mathrm{~cm}$.

$$
\begin{aligned}
& A B^{2}=5^{2}+3^{2}+8^{2}=98 \\
& \mathrm{AB}=\sqrt{98} \approx 9.899 \mathrm{~cm}
\end{aligned}
$$

10.

These data fit SSA, so the solution may not be unique. Two different triangles satisfy data.
11.

Impossible
(Triangle Inequality)
12. Because of symmetry, and the definition of isosceles, $\mathrm{HB}=2$.

By similar triangles, $\frac{5}{8}=\frac{x}{H B} . \quad$ So $x=\frac{(5)(2)}{8}=1.25 \mathrm{~cm}$
13. $\tan 50^{\circ}=\frac{x}{2.4}$ so $x=(2.4)(\tan 50)$
$x \approx 2.86 \mathrm{~cm}$

14.

$$
\begin{aligned}
& \frac{5}{6}=\frac{h}{20+6} \text { by similar triangles } \\
& 6 \mathrm{~h}=5(26) \\
& \mathrm{h}=21 \frac{2}{3} \mathrm{ft}
\end{aligned}
$$

15. $\mathrm{V}_{1}=\ell \cdot \mathrm{w} \cdot \mathrm{h}$
$V_{2}=(2 \ell) \cdot(2 w) \cdot(2 h)$
$V_{2}=8 l w h=8 V_{1} \quad$ The second box has 8 times the volume of the first box.
16.

$$
\begin{aligned}
& \angle \mathrm{APB}=40^{\circ} \quad(\text { Given }) \\
& \angle \mathrm{PAO}=\angle \mathrm{PBO}=90^{\circ}(\text { Fact } \mathrm{A}) \\
& \triangle \mathrm{APO} \cong \triangle \mathrm{BPO} \\
& \overline{(\overline{A P} \cong \overline{B P}, \text { Fact } \mathrm{B} ;} \\
& \overline{O A} \cong \overline{O B}, \text { radii } \\
& \overline{O P} \cong \overline{O P}, \text { SSS }) \\
& \angle \mathrm{APO}=20^{\circ}, \angle \mathrm{AOP}=70^{\circ} \\
& \angle \mathrm{AOB}=140^{\circ} \text { which is the central angle } \\
& \text { So Arc } \left.\mathrm{AB}=140^{\circ} \quad \text { (Fact } \mathrm{C}\right)
\end{aligned}
$$

17.

$R=$ diameter of sphere; r = diameter of cylinder base; $h=$ height of cylinder
18.

Rectangle

rhombus

Square
19.

parabola
20.

A right angle

(The intercepted arc is 180°, so the angle measures 90°.)
21.

X is the exterior angle. The measure of X can be found b finding the size of each inside angle and subtracting from 180°.

$$
\begin{aligned}
& X=180^{\circ}-\frac{3(180)^{\circ}}{5} \\
& x=72^{\circ}
\end{aligned}
$$

22. $\overline{C A} \perp \overline{P A}, \overline{C B} \perp \overline{P B}$

$$
P A=P B
$$

23.

25.

Cross-section is a circle
24.

Obtain a cylinder

26.

Two diagonals will "triangulate" the pentagon and make it rigid.

28.

29. Shapes a, c, d, and e
30. First find slope between $(4,5)$ and $(2,-3)$

$$
\text { Slope }=\frac{5-(-3)}{4-2}=\frac{8}{2}=4
$$

Use either point in the formula $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{array}{cc}
\text { Using }(4,5): & y-5=4(x-4) \\
& y=4 x-16+5 \\
y=4 x-11 & \text { Using }(2,-3): \\
& y+3=4(x-2) \\
y=4 x-8-3 \\
& y=4 x-11
\end{array}
$$

31. Yes, because their slopes are negative reciprocals of each other.

$$
y=3 x \text { has a slope of } 3
$$

$$
\begin{aligned}
3 y+x & =0 \\
3 y & =-x \\
y & =-\frac{1}{3} x, \text { which has a slope of }-\frac{1}{3}
\end{aligned}
$$

32.

Using the points (a, a) and $\left(\frac{a}{2}, 0\right)$ to get
\boldsymbol{x}

$$
\begin{aligned}
& \text { slope: } \frac{a-0}{\frac{a}{2}-0}=\frac{a}{\frac{a}{2}}=2 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=2\left(x-\frac{a}{2}\right) \\
& y=2 x-a
\end{aligned}
$$

