Answers to Math 95 Review Sheets Problems

1) $z=25 / 7$
2) a) $y=\frac{3 x-8}{2}$ or $y=\frac{3}{2} x-4$
b) $x=\frac{7}{r-11}$
3) The value of the loom after 5 years is $\$ 1470$.
4) a) Let x be the original price.

Equation: $(x+0.40 x)-0.40(x+0.40 x)=220$.
Answer: The original price was $\$ 261.90$.
Let r be the single discount rate.
Equation: $261.90-261.90 r=220$
Answer: $r=0.16$ or 16%
b) Answer: The selling price should be $\$ 95,000$
5) ai) $18 \mathrm{ft} . \quad$ aii) $20 \mathrm{sq} . \mathrm{ft} \quad$ aiii) 40 cubic $\mathrm{ft} \quad$ aiv) $76 \mathrm{sq} . \mathrm{ft}$.
b) The area of the triangle is 84 sq . in; perimeter 42 in .
c) Area, approx. $157 \mathrm{sq} . \mathrm{cm}$; Perimeter, approx. 51 cm
6) a) For line $A: x$-int $(10,0), y$-int $(0,15)$
b) x-int is $(2,0) ; y$-int is $(0,-3)$. c) See graph below.

7) a) Slope is $2 / 5$.
b) Line A : $-3 / 2$, Line B : undefined
c) Slope is 0
8)

9) $y=-(2 / 3) x+6$; slope $-2 / 3, y$-int $(0,6)$
10) a) One pair has same slope 4; other pair has slope - 1 Slopes 4 and -1 are not negative reciprocals.
b) Slope of first is $3 / 2$, the second $-2 / 3$. They are negative reciprocals so the lines are perpendicular.
11) a) The equation of this vertical line is $x=-25$.
b) A line whose equation is $y=-2$ is shown above in 6).
12) a) $y-5=-\frac{1}{5}(x-2), \quad y=-\frac{1}{5} x+\frac{27}{5}$
b) $y=-\frac{1}{2} x-\frac{5}{2}$
13) a) No. For 15 rides, the cost is less without the pass.
b) The difference is $\$ 5$
c) For 20 rides, the cost will be the same.
d) The cost of the pass is $\$ 20$.
14) ai) Slope is 1 dollar per ride.
aii) The cost per ride is $\$ 1$ for a person with a pass. aiii) The vertical intercept indicates the pass costs $\$ 20$.
b) The vertical intercept is 1549 thousand which says there were $1,549,000$ nurses in 1985.
The slope is 34 thousand per year which says the number of nurses is increasing at a rate of 34,000 per year.
$(8,2) \mathrm{No}$;
$(2,0)$ No ;
$(5,1)$ Yes
16) a) The solution is $x=8, y=7$, as shown.

b) Solution is $x=5, y=1$, as shown.

17) a) The solution is $x=2, y=-3$.
b) The solution is $x=-1, y=-3$.
18) a) Let $x=$ dollar amount invested in stocks and $y=$ dollar amount in bonds. The system is

$$
\begin{aligned}
& x+y=20000 \\
& 0.15 x+0.108 y=2496
\end{aligned}
$$

Answer: \$8,000 in stocks, \$12,000 in bonds
b) 20 gallons of the 30% solution should be mixed with 40 gallons of the 60% solution.
19)
a) $9 x^{4} y^{10}$
b) $\frac{5 x^{7}}{16 y^{5}}$
c) $\frac{b^{6}}{3 a^{11}}$
20) 1
21) a) $-12 x^{4}-4 x^{3}+x^{2}+9 x-6$; degree 4 ; leading coefficient -12 .
b) One possibility is $5 x^{6}+7 x^{2}-9$.
22) a) $22 x^{3}-14 x^{2}-4 x+8$
b) $12 x^{3}+4 x^{2}+12 x-14$
23) a) $-10 x^{5}+16 x^{4}-14 x^{3}+6 x^{2}$
b) $x^{3}+125$
c) $35 x^{2}+16 x-3$
d) $4 x^{2}-9$
$\begin{array}{ll}\text { 24) } 1+\frac{4}{x} & \text { b) } 2 x^{4}-x+\frac{1}{3 x}\end{array}$
25) a) $a b(2 a-5 b+7 a b)$
b) $(x-3)(7+y)$
c) $-3 x(x-9)$
26) a) $(x-3)\left(x^{2}+4\right)$
b) $(3 x-2)(4 x+1)$
27) a) $(2 x-5)(3 x+7)$
b) $5 w(3 w-2)(w-1)$
28) $(6 x-7 y)(6 x+7 y)$
29) a) $(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)$
b) $(5 b+4)\left(25 b^{2}-20 b+16\right)$
30) a) $x=5 / 2$ or $x=-7 / 3$
b) $x=5 / 3$
c) $x=0$ or $x=4$
31) a) $3 x^{2}-x+5=0 \quad$ b) $2 ; 3$ c) 5 d) $3,-1,5$
32) The fraction is not defined if $x=\square 1$ or if $x=\square-\square 1$.
33) a) $\frac{3}{a+3}$
b) $-1 / 2$
34) a) $\frac{5(x+1)}{3} \quad$ b) 4
35) a) 2
b) $-\frac{1}{2(t-4)}$
c) $\frac{3 x-5}{x(x-5)}$
36) $\frac{x+4}{x^{3}}$
37) a) $x=1 / 4$
b) $x=0$ or $x=4$
38) About 1053 units should be produced. The average cost cannot be $\$ 4.00$ per unit. (Try substituting $\mathrm{C}=\square 4$ and solve for x. What happens?)
39) a) $h(0)=-1, \quad h(-4)=19, \quad h(c)=2 c^{2}+3 c-1$, $h(5 r)=50 r^{2}+15 r-1$
b)

F	-13	4	32	212	451
$g(F)$	-25	-15.6	0	100	232.8

40)

a) $[-1,6)$
b) $x \leq 10 ;(-\infty, 10]$
41) a) $x \leq-1$

b) $x<18 / 5$ or $\mathrm{x}<3.6, \quad(-\infty, 18 / 5)$
42) a) $\square 2$
b) $\square-1 / 4$
43) a) $\square 4.729$
b) $\square 34.238$, \square rounded to 3 places \square
44) a) $\square \square \square L^{2 / 5} m^{4 / 5}$
b) $\sqrt[3]{(8 x)^{2}}$ or $\square \square \square(\sqrt[3]{8 x})^{2}$
45) ai) $\quad 6$
aii) $\square 25$
aiii) $\square 27$
b) $14 y^{7 / 12}$
46) a) $\square 2 x^{2} y^{2} \sqrt{11 y} \square$
$\square \mathrm{b}) \square 4 x^{6} \sqrt{2 x}$
47) a) $\square 3 x$
b) $\square \square \frac{x^{2} \sqrt{2 x}}{3}$
48) a) $\frac{\sqrt{2}}{2} \square$
b) $\frac{\sqrt{30}}{6} \square \square$
49) $-2 \sqrt{3} \square$
50) \quad a $\square 10 \sqrt{3}+2 \sqrt{6} \square \quad$ b) $\sqrt{6}+\sqrt{10}+\sqrt{21}+\sqrt{35} \square$
$\square \square \square \square \square \square$
51) $\begin{array}{ll}\text { a) } \square x \square=9 & \text { b) } \square x \square=3 \text { or } x=-1\end{array}$
c) $x \square=\square-2$ or $x=\square-\square 4$
52) The speed was approximately 30 mph .
53) $3 i \sqrt{5} \square$
54) a) $x= \pm \sqrt{8}$ or $\pm 2 \sqrt{2}$
b) $y=\frac{1 \pm 4}{3}$, thus $y=5 / 3$ or $y=-1$
55) a) $x= \pm 4 i$
b) $x=\frac{3 \pm 2 i}{2}$ or $\frac{3}{2} \pm i$
56) $(x+3)^{2}=14$, thus $x=-3 \pm \sqrt{14}$
57) $\sqrt{101}$
58) a) \square Discriminant is 44 ; there will be two real solutions. $\mathrm{b} \square$) Discriminant is $\square-76$; there will be two imaginary solutions.
59) a) $x=\frac{-6 \pm \sqrt{44}}{-4}$ which when simplified, $x=\frac{3 \pm \sqrt{11}}{2}$.
b) $t=-3+2 i$ or $t=-3-2 i$
60)
a) $x=3$ or $x=9$
b) $x=4 \pm \sqrt{5}$
61) a) The dimensions are $10 \sqrt{5}$ by $20 \sqrt{5}$, or approximately 22.4 feet by 44.7 feet.
b) The base is 16.3 inches; the height is 12.3 inches.
62)

63) The solutions are the x-intercepts of the graph, $x \approx-1.5$ and $x \approx 3.5$.
64) a) parabola b) symmetry c) $(1,-6)$ d) minimum
65) a) Opens upward
b) Opens downward
66) y-int $(0,-5)$; x-intercepts: $(1.35,0)$ and $(-1.85,0)$
67) $x=1$ is the equation of the axis of symmetry. The vertex is located at $(1,-9)$.
68) a)

$$
\begin{aligned}
& \text { Axis of sym. } \\
& \quad x=1 \\
& \text { vertex }(1,-9) \\
& y \text {-int is }(0,-8) \\
& x \text {-ints }(-2,0) \text {, } \\
& (4,0)
\end{aligned}
$$

Additional pts

$$
(-3,7),(5,7)
$$

b)

$y=3 x^{2}-8 x+4$
Axis of sym. $x=4 / 3$
vertex (4/3, -4/3)
y-int $(0,4)$
x-ints $(2 / 3,0)$, $(2,0)$

Additional point

 $(8 / 3,4)$ sym. to y-int.
69) The parabola opens upward and therefore has a minimum point at the vertex, $(3,-32)$.
70) a) The maximum height was 105 feet.
b) It took 2.5 seconds to reach that height.
c) It hits the ground 5 seconds after launch.
d) When $t=0, h=5$. So the y-int is 5 feet and this is the height of the platform.
71) $f(-1)=5 / 2, f(3)=40$
72) a) The account giving 5.6% compounded semiannually will grow to $\$ 7908.28 ; 5.3 \%$ monthly yields $\$ 7816.02$. Thus, the first is better by $\$ 98.26$.
b) For continuous compounding, the balance will be $\$ 7820.58$, for a total interest of $\$ 1820.58$.
c) There were approximately 1200 people in 1970. In 2010, 40 years later, the predicted population is about 2260 .
73) a) $2^{6}=64$
b) $10^{B}=A$
c) $e^{3.5}=x$
d) $\log _{3} 81=4$ and $x=\ln 100$
e) $\log _{5} 125=3$ because 3 is the exponent on 5 to get 125
f) The exponent on 2 is 1.7 because $2^{1.7}=T$.
74) $0.3522 ; 2.3522 ; 1.9544 ; 6.5596$; $\log (-40)$ does not exist

