Designing the Future of Learning: Unthink School to Rethink Learning

Bryan Setser and Priscilla Maynor – 2Revolutions

ECCO—April 25, 2014
Introductions

1. Name and Role
2. One thing you are excited about today or with ECCO
3. One thing you have a question about or would like to know regarding the future of learning?
Agenda

8:30 Welcome and Introductions
8:40 Future of Learning Design Session
10:30 Break
10:45 Prototype Design Session: Part 1
12:00 Lunch and Prototype Design Session: Part II
1:15 From PLC to PLN: Leadership 2.0
2:00 INSPIRED 90 Day Cycles
2:30 Evaluation and Next Steps
“You've got to go out on a limb sometimes because that's where the fruit is.”

– Will Rogers
Objectives

1. Introduce 2Rev’s Future of Learning framework, taxonomy and philosophy
2. Share examples and trends of current approaches to building next generation models
3. Show you why design thinking matters to fuel innovation
4. Offer tools to help you prototype your ideas at this event and prepare you to execute
2Rev as Mission-driven Design Lab

2Rev designs, launches and supports Future of Learning models and catalyzes the conditions within which they can thrive.
conditions

“Future of Learning”

models

models
2Rev’s Future of Learning Framework
A “Both, And” Orientation

How can we jump from one curve to the next?

IMPROVE the System We Have
(Incremental = Diminishing Returns)

NEXT

NOW

INNOVATE the System We Need
(Cross the Chasm = Difficult, But Promising)

FUTURE

Great

Good

Stable

Crisis

Learn

Prototype (New)

Transform School

Transform District

Experiment (Existing)
INTEGRATIVE DESIGN

Video TA and NTK
Trends Driving the Future of Learning

1. Drive Toward Personalization
2. Explosive Growth in Technology
3. Advances in the Science of Cognition
4. Shifting Policy Environments
5. Increased Economic Pressures
6. An Evolving Ecosystem of Learning
Trend #1: Drive Toward Personalization

Students’ learning experiences – what they learn, and how, when, and where they learn – are tailored to their individual needs, skills, and interests.

Students also develop deep connections to each other, their teachers and other adults.

Gates Foundation, 2014
What Do We Mean By “Personalization” Anyway?

Does it refer to learning experiences for students that are ______________?

a) Tech-enabled
b) “Deeper”
c) Interest-driven
d) Applied/experiential
e) Learner-driven
f) All of the above?
Components of Personalized Performance

- High Expectations
- Student Centered
- Time
- Process
- Technology
- Tools
- Scalable & Sustainable
- Self-pacing, Mastery, & Competency-based Credit
- Blended Learning
5 Simple Questions

Student voice in a classroom is a powerful tool of engagement. But to create that culture of student inquiry, good questions are essential. Here are 5 good ones, useful at any time, in any lesson.

"Share with a neighbor before sharing with me."

- "What do you think?"
 - "Why do you think that?"
 - "Can you tell me more?"
 - "What do you still have?"
 - "How do you know this?"

Best used after a statement, prediction, conclusion, or observation. Students will often need for us to provide clarity on what we mean by "What do you think?" Ironically, the simplicity might confuse them.

Push students to provide more depth and reason for their answers.

When this question is asked, students can make connections to their ideas and thoughts with things they’ve experienced, read and have seen.

This question challenges students to extend their thinking and share further evidence for their ideas.

Questions like this require patience - wait time, but also time for students to get used to asking questions, not just answering them.

Brevity is a part of why these are simple, yet powerful questions. They require students to provide the weight, depth and complexity to a conversation.
Creating K-12 Electronic Portfolios Using 1-to-1 devices and Web 2.0 tools
©2010, 2012, Helen C. Barret, Ph.D.
Personalized Professional Development and Practice

<table>
<thead>
<tr>
<th>Method</th>
<th>Knowledge</th>
<th>Skill Acquisition</th>
<th>Classroom Application</th>
<th>Student Effect Sizes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Information</td>
<td>40-80%</td>
<td>10%</td>
<td>5%</td>
<td>0.01</td>
</tr>
<tr>
<td>Present + Model</td>
<td>80-85%</td>
<td>10-40%</td>
<td>5-10%</td>
<td>0.03</td>
</tr>
<tr>
<td>Present + Model + Practice + Feedback</td>
<td>80-85%</td>
<td>80%</td>
<td>10-15%</td>
<td>0.39</td>
</tr>
<tr>
<td>Present + Model + Practice + Feedback + Coaching</td>
<td>90%</td>
<td>90%</td>
<td>80-90%</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Course Dashboard

Skills to Celebrate

<table>
<thead>
<tr>
<th>Skill Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.08 Percent</td>
<td>100%</td>
</tr>
<tr>
<td>5.08 Real-life Word Problems</td>
<td>100%</td>
</tr>
<tr>
<td>4.2 Read, write, compare, order whole numbers</td>
<td>100%</td>
</tr>
<tr>
<td>5.12 Find Unknown Quantities in Number Sentences</td>
<td>100%</td>
</tr>
<tr>
<td>5.10 When to Estimate and When to use exact answer</td>
<td>100%</td>
</tr>
</tbody>
</table>

Skills to Spiral and Reteach

<table>
<thead>
<tr>
<th>Skill Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20 Identify Appropriate Tools to Measure</td>
<td>51%</td>
</tr>
<tr>
<td>6.07 Decimals</td>
<td>59%</td>
</tr>
<tr>
<td>5.21 Measure Angles</td>
<td>65%</td>
</tr>
<tr>
<td>5.16 Elapsed Time</td>
<td>68%</td>
</tr>
<tr>
<td>5.11 Ratios and Proportions</td>
<td>69%</td>
</tr>
</tbody>
</table>

Top Academic Performers

<table>
<thead>
<tr>
<th>Student</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack Aaron</td>
<td>100%</td>
</tr>
<tr>
<td>Kelly Lesure</td>
<td>88%</td>
</tr>
<tr>
<td>Javier Arciniega</td>
<td>86%</td>
</tr>
<tr>
<td>Kurt Leaton</td>
<td>86%</td>
</tr>
<tr>
<td>Elmo Toadvine</td>
<td>84%</td>
</tr>
</tbody>
</table>

Academic Watchlist

<table>
<thead>
<tr>
<th>Student</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Jones</td>
<td>50%</td>
</tr>
<tr>
<td>Chance Carin</td>
<td>63%</td>
</tr>
<tr>
<td>Armand Vay</td>
<td>65%</td>
</tr>
<tr>
<td>Wyatt Rceck</td>
<td>67%</td>
</tr>
<tr>
<td>Jesse Vanderark</td>
<td>68%</td>
</tr>
</tbody>
</table>
Personalization: A Peek Around the Corner...

#ECCOHOPE

#ECCOFEAR

still got doubts?

#ECCODoubt
Trend #2: Explosive Growth of Technology

We live in the “age of the mathematician,” in which inordinate power and riches will go to the people who create the algorithms that end up dictating who and what we know.

Yuri Milner – Russian Social Media Mogul
Professional Standards

Instructions

1. Uses an appropriate range of teaching strategies
 - Inadequate
 - Satisfactory
 - Good
 - Outstanding

Timeline: 00:00:05 - 00:00:07

Note

This a great example of how you use different teaching strategies.

2. Uses appropriate resources, including e-learning, which meets learners needs

3. Builds on prior knowledge and attainment in order that learners meet learning objectives

4. Develops concepts and processes which enable learners to apply new knowledge, understanding and skills
STEP 06

Holding the muscle flaps with the forceps, separate the muscles from the tissue below.
GET A FREE TRIAL NOW!

Teachers, create your own FREE account at Mangahigh. Students will be able to save their scores, earn medals and access Prodigy.

Create School

Spread the word about Mangahigh

Play Now

Achievements
Marysville Innovation Team

Type your note here...

Group Posts

Me to Marysville Innovation Team

Part of building the case for PLCs and ELCs.

Plugging Into Professional Learning Communities
blogs.edweek.org

3 hours ago
Research any topic with an interactive concept map, that you can customize and share.
A JOURNEY THROUGH 13.8 BILLION YEARS OF HISTORY

Consider the big questions about our Universe, our planet, life, and humanity. From the Big Bang to modern day to where we are going in the future, Big History covers it all.
4 Innovative Online Teaching Tools for Computer Science

By: Julie Perrigan

As today’s computer technology becomes more complex and useful, it’s important for computer science majors to stay ahead of the curve. Every company, industry, and even a growing number of households rely on a variety of technological devices for their communications, operations, and security needs. The good news is that with all of this new technology comes even more convenient ways to learn more about computer science. Below are a handful of...
Hype Cycle and Technology Adoption Lifecycle Plotted together

- **Technology Trigger**
- **Peak of Inflated Expectation**
- **Trough of Disillusionment**
- **Slope of Enlightenment**
- **Plateau of Productivity**

- **Innovators**
- **Early Adopters**
- **Early Majority**
- **Late Majority**
- **Laggards**

"The Chasm"
But before we get too enamored with technology.....
What problem are you trying to solve?

My daughter is 17 and she is an inexperienced driver........
IF I had an app that could track her location, THEN I could advise her and keep her safe at key points on her trip.
What problems have you solved?
Trend #3: Advances in the Science of Cognition

“There’s a lot we don’t know before we say we don’t know that.”

Mark Twain
The Neurology of Gaming

Video games have both positive and negative effects on the human brain. They can be used to educate through repetition and feedback, but they also have some less-positive side effects.

Different gaming scenarios and situations affect different areas of the brain by provoking certain reactions:

FRONTAL LOBE
One study claimed frequent players can get ‘video game brain.’ This means key parts of their frontal lobe become underused, which can alter moods.

PREFRONTAL CORTEX
Games that require logical thinking, like ‘Othello’ and ‘Tetris,’ activate this area, which controls decision making.

DOPAMINE
Dopamine, which is involved in learning and feelings of reward, is released in the brain’s striatum during video game play.

DORSAL ANTERIOR CINGULATE CORTEX
Immediately after firing a weapon in a video game, players show greater activity in this area, which controls cognition and planning.

ROSTRAL ANTERIOR CINGULATE CORTEX & AMYGDALE
Areas that resolve emotional conflict showed less activity while players fired a weapon.

PREAMPUTER & PARIETAL CORTEX
Games that require real-time action, like ‘Space Invader,’ activate these areas, which control sensory movement.

Game play involves repeated actions that strengthen the brain cell connections underlying memory and learning.
How Neuroscience is Changing the Classroom

Later Start Times
High schools are pushing back start times so students are more alert for class.

Fewer Breaks
Schools are shortening summer breaks because research shows the more time a student spends away from school, the more he'll forget.

Cognitive Tutoring
Software lets students learn by doing and adjusts to their individual needs.

Making Learning Fun
Studies show that people remember more when they enjoy an experience.

More Variety
Teachers are presenting lessons a variety of ways to improve retention.
“Presence” creates better learning and a continuous communication feedback loop for teachers.

Current Modalities are **Broadcast-centric**

VenueGen is **Participation-centric**

“I tell you and you forget. I show you and you remember. I involve you and you understand.”

– Confucius

Observer’s Brain Activity

Participant’s Brain Activity

Student Directed Discussion
Section 3

Revolutionary Documents

Social Studies
- RMP-NC-Civics and Economics-Mr. Barnes

Science
- RMP-NC-Physical Science-Mr. Arockiasamy

Math
- RMP-NC-Common Core Geometry-Ms Mcleod

RMP-NC-Civics and Economics-Mr. Barnes
Current Lesson:
Revolutionary Documents

Next Activity:
Practice

Start Date: 9/13/2013 Target Date: 1/22/2014

Course Completed: 3.7%
- Behind
- On Target
- Ahead

Target Completion: 16.46%

Overall Grade: 91.7%
- Actual Grade: 20.6%
“Blooming” with Web 2.0 Tools
Purpose of Reports

This report is designed to inform you about the student’s progress toward achieving the New Hampshire Grade Span Expectation (GSEs) Standards. The GSEs along with the skill expectations of your school establish high and challenging expectations for all students; describe what students should know, be able to do, and care about; and serve as a basis for curriculum, instruction, and assessment at the Sanborn Regional School District. The curriculum for each content area is based on the standards relevant to the area. This report however cannot communicate everything you might possibly want to know about your child’s progress. This report should be considered with other information you receive from the school such as your child’s work, the open house, conferences, and skills checklist provided by teachers throughout the school year. Communication between the family and the school staff is highly encouraged. If you have any questions or concerns, please contact your child’s teacher or counselor.

<table>
<thead>
<tr>
<th>Level</th>
<th>Letter</th>
<th>Numerical</th>
<th>Performance Descriptors for Academic Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceeding</td>
<td>E</td>
<td>90-100</td>
<td>The student consistently exceeds the performance standards for the grade-level. The student with relative ease, grasps, applies, generalizes, and extends key concepts, processes, and skills consistently and independently.</td>
</tr>
<tr>
<td>Meeting</td>
<td>M</td>
<td>80-89.9</td>
<td>The student consistently meets the performance standards for the grade-level. The student, with limited errors, grasps key concepts, processes, and skills for the grade-level and understands and applies them effectively.</td>
</tr>
<tr>
<td>In Progress</td>
<td>IP</td>
<td>70-79.9</td>
<td>The student is progressing toward meeting the performance standard for the grade-level. The student is beginning to grasp key concepts, processes, and skills for the grade-level, but demonstrates inconsistent understanding and application of concepts.</td>
</tr>
<tr>
<td>Limited Progress</td>
<td>LP</td>
<td>65-69.9</td>
<td>The student is making some progress toward meeting the performance standard. The student is not demonstrating understanding of grade-level key concepts, processes and skills and requires additional time and support.</td>
</tr>
<tr>
<td>Not Met</td>
<td>NM</td>
<td>50 – 64.9</td>
<td>The student has not met the standard</td>
</tr>
<tr>
<td>Not Yet Competent</td>
<td>NYC</td>
<td></td>
<td>The student is not yet competent</td>
</tr>
<tr>
<td>Insufficient Work Shown</td>
<td>IWS</td>
<td></td>
<td>The student has not submitted a sufficient amount of work yet to calculate a grade</td>
</tr>
<tr>
<td>Incomplete</td>
<td>I</td>
<td></td>
<td>Incomplete Grade</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>S</td>
<td></td>
<td>Satisfactory Performance</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>U</td>
<td></td>
<td>Unsatisfactory Performance</td>
</tr>
</tbody>
</table>

© 2013 2REVOLUTIONS LLC. ALL RIGHTS RESERVED.
Let’s do a table talk and digital exercise on the 4 As based upon the standards based report card from New Hampshire:

- What **(A)greements** need to be made?
- What **(A)rguments** are needed?
- What **(A)ssumptions** can you make?
- What **(A)spirations** do you have?

Please table talk, elect a spokesperson, and then we’ll record audience reaction on a padlet.
Trend #6: An Evolving Ecosystem of Learning

If you had enough resources, you could make the decision to go and live in France. You might also decide to not learn French. You would survive. You would be able to get by, but you would never be a full participant in the community. If you ever found yourself in a competitive situation you would fail. In comparison, remaining digitally un-augmented will leave you at a disadvantage measured in dozens of IQ points in the communities and learning ecosystems of tomorrow.

-- Richard Boyd
One Vision for an Integrated Learning Ecosystem...
A Summer Break Reading List

- Reinventing Discovery: The New Era of Networked Science
 - Michael Nielsen
- Recombinant Education: Regenerating the Learning Ecosystem
 - KnowledgeWorks
- Disrupting Class: How Disruptive Innovation Will Change the Way the World Learns
 - Clayton M. Christensen
- Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization
 - K. Eric Drexler
- The Wisdom of Crowds
 - James Surowiecki
- World Class Learners: Educating Creative and Entrepreneurial Students
 - Yong Zhao
- Getting Smart: How Digital Learning Is Changing the World
 - Curtis J. Bonk
- For Disruptive Innovation
- Digital Learning Now!
More Students Engaged and On Track
Early results from North Carolina’s innovative high schools indicate that not only are more students staying in school - more are graduating ready for college, career and life.

More students stay in school
The annual dropout rate for North Carolina’s innovative high schools in 2010-11 was 2 percent - significantly below the statewide rate of 3.43 percent. For early college high schools, it was less than 1 percent. About one of every three innovative high schools -- 37 of 106 -- reported no dropouts.

More 9th graders stay in school and advance
Nearly three quarters of all innovative high schools had no 9th grade dropouts in 2010-11, and half promoted every 9th grader to 10th grade. Research shows that 9th grade is when most students drop out, so keeping kids in school through their freshman year is critical to their future.
Digital Conversion

Summer Connection 2014

Dates are set: July 22-24, 2014

Click here for information

Interested in Visiting MGSD.....Click Here!

Engage...
Rethinking Time/ Teacher of Record

<table>
<thead>
<tr>
<th>Key Advantages</th>
<th>Generation Schools</th>
<th>Conventional Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Expanded learning time for all students</td>
<td>200 days per year</td>
<td>180 days per year</td>
</tr>
<tr>
<td></td>
<td>7-8 hours per day</td>
<td>6-6 ½ hours per day</td>
</tr>
<tr>
<td>2. Small class size in all Foundation Courses</td>
<td>14-18</td>
<td>28-34</td>
</tr>
<tr>
<td>3. Exceptional college and career guidance</td>
<td>1,100 hours per student</td>
<td>1-2 hours per student</td>
</tr>
<tr>
<td>4. Technology enhanced learning</td>
<td>In-class minilabs and more</td>
<td>Limited in-class access</td>
</tr>
<tr>
<td>5. Reduced student load for teachers</td>
<td>50 or fewer students daily</td>
<td>150 students daily</td>
</tr>
<tr>
<td>6. Reduced course load for teachers</td>
<td>3 classes per day</td>
<td>5 classes per day</td>
</tr>
<tr>
<td>7. Expanded common planning time</td>
<td>2 hours every day</td>
<td>Typically 45 min. weekly</td>
</tr>
<tr>
<td>8. High-caliber professional development</td>
<td>20 or more days per year</td>
<td>2-4 days per year</td>
</tr>
</tbody>
</table>

| All without increasing costs. | NYC: $12,403 | $12,482 |
Cristo Rey Jesuit College Prep (Houston, TX) serves disadvantaged students in urban communities that operates a Corporate Work Study Program that:

- provides an opportunity for students to work and earn 65-70% of their tuition
- operates as a non-profit employee leasing agent working with 133 corporate partners
- every student works in job-sharing teams of four to cover a standard business week (5 days/mo for each student)
So how do you define at ECCO?

What do your students need to know and be able to do in the complex future that awaits them after they graduate?
Identifying Barriers

If there is so much agreement on the definition of success, why aren’t institutions already preparing students for this future?

What’s preventing you?
"There is nothing more difficult to take in hand, more perilous to conduct, than to take a lead in the introduction of a new order of things, because the innovation has for enemies all those who have done well under the old conditions and lukewarm defenders in those who may do well under the new."

– Niccolo Machiavelli
REMEMBER:
Innovation is a **VERB**!
A GPS for Next Generation Educators

IMPROVE the System We Have
(Incremental = Diminishing Returns)

INNOVATE the System We Need
(Cross the Chasm = Difficult, But Promising)

NOW
Stable
Crisis

FUTURE
Great
Transform District
Transform School
Prototype (New)
Experiment (Existing)

You are HERE
Good
Learn
So...where is the innovation?
Why does innovation happen?
What is the Innovation?
Does it happen in Education?

The $4 Million Teacher

South Korea's students rank among the best in the world, and its top teachers can make a fortune. Can the U.S. learn from this academic superpower?

Kim Ki-hoon earns $4 million a year in South Korea, where he is known as a rock-star teacher—a combination of words not typically heard in the rest of the world. Mr. Kim has been teaching for over 20 years, all of them in the country's private, after-school tutoring academies, known as hagwons. Unlike most teachers across the globe, he is paid according to the demand for his skills—and he is in high demand.

Mr. Kim works about 60 hours a week teaching English, although he spends only three of those hours giving lectures. His classes are recorded on video, and

© 2013 2REVOLUTIONS LLC. ALL RIGHTS RESERVED.
Role of Short-cycle Design

Institute for Healthcare Improvement

Design Thinking

Google Innovation “Drivers”

Networked Improvement Communities
Short-cycle Methodology

Define ➤ Identify ➤ Brainstorm ➤ Prioritize ➤ Operationalize

Challenges & Opportunities ➤ Assets & Barriers ➤ Solutions & Hypotheses ➤ Best Idea(s) ➤ Integrate & Plan for Implementation

Continuously Iterate Via “Short Cycles” to... See What Works!
Short-cycle Innovation: Personalization

Challenge: Alternative school wants to move toward personalization, but doesn’t know where to start.

Solution/Hypothesis: By using student-facing ILPs combined with online learning, we can personalize learning for all students – to move them further faster.

Prototype: Use an ILP as a living profile of students in 9th grade, allowing them to move based on math readiness using an online module. Conclude 8-week prototype with student-led conferences reflecting on their math learning.

Outcome: A majority of students (~70%) showed greater progress over this 8-week period than in two preceding periods, and the combination of ILP and student-led conferences showed promising increases in student meta-cognition.

Next Step: School elected to Scale their effort – expanding the work to new band of grade 9-10 teachers that will set up a new prototype. Also currently investigating whether the right LMS can serve as platform to manage the work more deeply over time.
Challenge: Alternative school wants to differentiate instruction enabled by technology for all learners but is unsure where to start.

Solution/Hypothesis: By using Edmodo, students will be able to manage, track, and showcase student work through badges and groups that allow teachers to check in, coach, instruct, and differentiate activities for all students in a 9th grade English class.

Prototype: Use Edmodo and related tools for 16 weeks with students in the 9th grade English class to assess and deliver differentiated apps, instruction, and peer groups to meet all learners where they are.

Outcome: A majority of students showed greater growth on formative assessments as a result of being provided differentiated ways to showcase learning on Edmodo.

Next Step: School elected to Scale their effort – expanding the work to 9th grade math and will set up a new prototype. Also currently investigating whether they can use Get Clever.com to bring in other assessment and differentiation tools.
Short-cycle Innovation: Ecosystem of Learning

Challenge: Students do not use external town resources or world wide web networks to augment their ability to leverage ecosystems of learning.

Solution/Hypothesis: If students are given access to town resources and experts over the web, they will more likely produce college and career ready skills.

Prototype: Each student in 11th grade will pair up with a town mentor and 4 experts over the web to choose college and career ready adventures using a Google site to track all progress. They will be trained by a teacher/school facilitator who will be charged with ensuring that standards and evidence of learning are collected on the Google site. They will be asked to give quarterly face to face presentations of their progress using Google presenter.

Outcome: Students showed 10% growth on baseline of college and career ready metrics provided by David Conley during a 16 week period.

Next Step: The district intends to expand the mentor and expert services to other sites.
From PLC to PLN: Leadership 2.0
What could our budget look like?

Start

1st Quarter 2014
Having clearly identify the target market and value proposition, the team decided to focus on raising the school's TQ by collaboratively developing a teacher rubric, refining teacher recruitment & reorganizing the leadership

2nd Quarter 2014
Building on the success from the 1Q, the leadership starts the development of a scope and sequence for student product K-12. A teacher coaching process is established, and a pilot for blended learning is identified

3rd Quarter 2014
Data from first 2 cycles provides valuable feedback. The board redesigns the school and chief performance assessment criteria, pilot is implemented, and marketing messages adjusted to reflect new narrative

4th Quarter 2014
Momentum is building with faculty, families, and donors because of the evidence of leadership and development. Fundraising target is increased because of greater donor engagement and higher quality. Research on master schedule for 2015-16

1st Quarter 2015
Record open house participation because of raving fans. New master schedule adopted, hiring for 15-16 is complete, and faculty culture is high.

Finish

What are new budget options?

Business Model Generation
Lean StartUp
Great by Choice
What is your current budget news?

2014
In response to accreditation feedback, build a strategic plan that addresses the key areas of concern and incorporates the input of all stakeholders. Develop approach, review mission, set goals and framework.

2015
Finalize plan with implementation schedule. Present the plan to the broader community. Begin implementation of the first phase of the plan. Prepare marketing materials and text for website.

2016
Collect feedback from surveys and performance data. Adjust the plan as a "living document" based on new leadership, opportunities and/or threats.

2017
Move into second phase of the plan. Establish working groups to determine most effective ways to improve faculty culture and student enrollment.

2018

What does the budget look like next year?
ISS CIA Model with PLCS

Quarterly Predictive Assessments

Instructional Facilitator Support
1. What do students need to know?
2. How will they learn it?
3. How will we know they've learned it?
4. What will we do if they don't learn it?
5. What will we do if they already know it?

Instructional Guides

Professional Learning Communities

Continuous Improvement Approach
Aligned Strategic Plans, PDSA, Systems Checks, Data Warehouse
Rationale –

“Throughout our ten-year study, whenever we found an effective school or an effective department within a school, without exception that school or department was part of a collaborative professional learning community.”

Milbrey McLaughlin

From Learning By Doing, Dufour, Dufour, Eaker, Many
I-SS Criteria for Setting Up PLC Collaborative Teams

- Same subject or curriculum
- Same grade (if they teach the same subject)
- Must meet together at one hour per week
- Clear parameters, priorities, and products that guide the work of the team toward the goal of improved student learning
Components of I-SS PLC Model

1. Team norms
2. Clearly defined essential learning targets
3. Student performance baseline data
4. Strategic SMART goals
5. PLC mission statement
6. Weekly collaborative team meetings
7. Focus on I-SS Teamwork Matrix requirements
8. Use of PDSA as our continuous improvement process
9. Tightly aligned professional development
10. NSDC professional development format
I-SS Teamwork Matrix

<table>
<thead>
<tr>
<th>Date/Week</th>
<th>Action</th>
<th>Person Responsible</th>
<th>Product</th>
<th>Observed by or reported to</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Aug 22 Teacher Workday Prior to Week 1</td>
<td>Establish PLC teams with input from teachers (Std 1)</td>
<td>Principal</td>
<td>Team list</td>
<td>Quality Assurance Department</td>
</tr>
<tr>
<td></td>
<td>Establish PLC team meeting schedules with input from teachers. (Std 1)</td>
<td>Principal</td>
<td>Team meeting schedule</td>
<td>Quality Assurance Department</td>
</tr>
<tr>
<td>By Aug 29: End of week 1</td>
<td>Establish PLC team norms – utilize Learning By Doing (LBD) process and/or template. (Std 1,4)</td>
<td>PLC Chair</td>
<td>Team Norms</td>
<td>Leadership Team</td>
</tr>
</tbody>
</table>
Alignment Between Requirements and Professional Development

PLC requirement:

Gap Analysis
Best Practice Strategies
Common Formative Assessment
Focus on PDSA

Aligned Professional Development:

....... Data Analysis Coaching
....... Lee Jenkins’ LtoJ
....... Marzano’s High Yield Instructional Strategies
....... coil’s Differentiation Strategies
....... Stiggins’ Assessment FOR Learning
....... Continuous Improvement
The Top PLNs with Meeting Times

#lrnchat

#gtchat #pblchat

#collegechat #edchat
Leadership 2.0 Web Walk

- INSPIRED and Edmodo
- 90 day cycle – Google Ecology Example
- Fidelity rubric
- Design Tools
Evaluation

http://www.surveyshare.com/s/AYACCHA